Oxidative stress attenuates NO-induced modulation of sympathetic neurotransmission in the mesenteric arterial bed of spontaneously hypertensive rats.
نویسندگان
چکیده
Current evidence suggests that hyperactivity of the sympathetic nervous system and endothelial dysfunction are important factors in the development and maintenance of hypertension. Under normal conditions the endothelial mediator nitric oxide (NO) negatively modulates the activity of the norepinephrine portion of sympathetic neurotransmission, thereby placing a "brake" on the vasoconstrictor ability of this transmitter. This property of NO is diminished in the isolated, perfused mesenteric arterial bed taken from the spontaneously hypertensive rat (SHR), resulting in greater nerve-stimulated norepinephrine and lower neuropeptide Y (NPY) overflow from this mesenteric preparation compared with that of the normotensive Wistar-Kyoto rat (WKY). We hypothesized that increased oxidative stress in the SHR contributes to the dysfunction in the NO modulation of sympathetic neurotransmission. Here we demonstrate that the antioxidant N-acetylcysteine reduced nerve-stimulated norepinephrine and increased NPY overflow in the mesenteric arterial bed taken from the SHR. Furthermore, this property of N-acetylcysteine was prevented by inhibiting nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester, demonstrating that the effect of N-acetylcysteine was due to the preservation of NO from oxidation. Despite a reduction in norepinephrine overflow, the nerve-stimulated perfusion pressure response in the SHR mesenteric bed was not altered by the inclusion of N-acetylcysteine. Studies including the Y(1) antagonist BIBO 3304 with N-acetylcysteine demonstrated that this preservation of the perfusion pressure response was due to elevated NPY overflow. These results demonstrate that the reduction in the bioavailability of NO as a result of elevated oxidative stress contributes to the increase in norepinephrine overflow from the SHR mesenteric sympathetic neuroeffector junction.
منابع مشابه
Oxidative stress attenuates the NO induced modulation of sympathetic neurotransmission in the mesenteric arterial bed of spontaneously hypertensive rats
Current evidence suggests that hyperactivity of the sympathetic nervous system, and endothelial dysfunction are important factors in the development and maintenance of hypertension. Under normal conditions the endothelial mediator nitric oxide (NO) negatively modulates the activity of the norepinephrine portion of sympathetic neurotransmission, thereby placing a “brake” on the vasoconstrictor a...
متن کاملModulation of neurotransmitter release by NO is altered in mesenteric arterial bed of spontaneously hypertensive rats.
Nitric oxide (NO) reacts with catecholamines resulting in their deactivation. In the present study with the use of the perfused mesenteric arterial bed as a model of the sympathetic neuroeffector junction, the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) resulted in the enhancement of the periarterial nerve stimulation-induced increase in perfusion pressure and no...
متن کاملEvaluation of vascular effects of aqueous Crocus sativus petals’ extract in the hypertensive rats
Background and Aim: Crocus sativus (C. sativus) petals attenuates smooth muscle tension and blood pressure in control animals. However the antihypertensive effect and its mechanisms haven’t been recognized. This study investigates the antihypertensive effects of C. sativus petals’ aqueous extract in hypertensive rats and also responses of the rat isolated perfused mesenteric bed. Materials and...
متن کاملRole of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملTaurine suppresses pressor response through the inhibition of sympathetic nerve activity and the improvement in baro-reflex sensitivity of spontaneously hypertensive rats.
To investigate the effect of taurine on the sympathetic nervous system, I observed pressor responses of perfused mesenteric arteries by electrical stimulation and baro-reflex sensitivity of spontaneously hypertensive rats (SHR/Izm) and control Wistar-Kyoto rats (WKY/Izm) treated with taurine. Taurine added to the perfusate suppressed norepinephrine (NE) overflow and the pressor response mediate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 294 1 شماره
صفحات -
تاریخ انتشار 2008